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Abstract: 

The optimization of Radio Frequency (RF) signal propagation models 

is a critical aspect of designing and managing modern wireless 

communication systems, particularly for 5G networks. Traditional 

models, based on empirical formulas and path loss models, have served 

the industry for decades, but they often fail to capture the complexity 

of urban environments, mobility, and dynamic network conditions. In 

light of the rapid advancements in wireless communication, deep 

learning techniques offer a promising solution to enhance the accuracy 

and efficiency of RF signal propagation models. The Project explores 

the application of deep learning regressors for optimizing RF signal 

propagation models in 5G networks. By leveraging large-scale data 

from real-world network deployments and simulations, deep learning 

models are trained to predict signal strength, coverage, and other key 

performance indicators with higher accuracy and computational 

efficiency than traditional methods. This research highlights the 

limitations of conventional RF models, the need for more adaptive and 

accurate prediction tools, and the significance of deep learning in 

improving the performance of 5G networks. The proposed deep 

learning-based approach addresses the challenges of signal prediction 

in complex environments, such as urban areas with high mobility, 

diverse terrain, and varying environmental conditions. The results show 

that deep learning regressors can significantly enhance RF signal 

propagation modelling, providing a more robust foundation for 5G 

network planning, optimization, and deployment. In the early days of 

wireless communications, signal propagation models were based on 

physical principles like free- space path loss and diffraction. These 

models were later enhanced with empirical data to account for real- 

world conditions. However, the growth of mobile networks, 

particularly the transition from 2G to 3G, and now to 5G, has outpaced 

the capabilities of traditional models. With the complexity of high- 

frequency signals, dense urban environments, and dynamic user 

behaviour, traditional propagation models have become less reliable. 

The need for efficient RF signal propagation models has always been 

central to wireless communication systems. Traditional models like the 

Hata model, COST-231, and Okumura-Hata were developed based on 

empirical measurements and assumptions that work well under 

specific conditions but fail to adapt to the rapidly changing and 

complex scenarios in modern networks. 
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1. INTRODUCTION 

 
Benchmarking different optimization algorithms is task, particularly 

for network-based cellular communication systems. The design and 

management process of these systems involves many stochastic 

variables and complex design parameters that demand an unbiased 

estimation and analysis. Though several optimization algorithms exist 

for different parametric modelling and tuning, an in-depth evaluation 

of their functional performance has not been adequately addressed, 

especially for cellular communication systems. The experimental data 

were taken from different radio signal propagation terrains around four 

encode cells. In order to assist the radio frequency engineer in selecting 

the most suitable optimization method for the parametric model tuning, 

three-fold benchmarking criteria comprising the Accuracy Profile 

Benchmark, Function Evaluation Benchmark, and Execution Speed 

Benchmark were employed. Cognitive radio is the enabling 

technology for supporting dynamic spectrum access: it addresses the 

spectrum scarcity problem that is faced in many countries. A cognitive 

radio is an intelligent radio that can be reprogrammed and reconfigured 

dynamically. A cognitive radio is designed to use the best available 

wireless channels in its surroundings. Its transceiver can automatically 

detect available channels in wireless spectrum and can change its 

transmission and reception parameters accordingly to allow more 

concurrent wireless communication in a given wireless band for a 

particular instant of time for a particular place. Such spectrum 

allocation is known as dynamic spectrum management (DSA). 

The widespread deployment of 5G networks has raised significant 

challenges in optimizing the efficiency and performance of Radio 

Frequency (RF) signal propagation. For 5G networks, which rely on 

high-frequency bands and massive antenna systems, predicting RF 

signal strength and coverage is crucial for ensuring that end-users 

experience reliable and high-speed connections. Traditional RF signal 

prediction models often struggle to account for the increasing 

complexity of network environments, such as urban interference, 

multipath propagation, and dynamic channel conditions. 

The evolution of wireless communication networks, particularly the 

rollout of 5G, has brought forward the need for highly accurate and 

scalable methods to predict RF signal strength. The motivation behind 

this research is rooted in the complexity and dynamic nature of modern 

communication systems, where traditional RF modelling techniques 

often fall short in dealing with the intricacies of 5G networks. 

The use of machine learning models specifically deep learning models 

like CNN has shown great promise in various fields, from image 

recognition to natural language processing. This research seeks to 

harness the power of deep learning to analyse and predict RF signal 

strength more effectively than traditional methods. The motivation 

extends to exploring how these models can generalize to unseen data 

and adapt to real-time changes in network conditions, which is crucial 

for the dynamic and evolving nature of 5G network. 
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2. LITERATURE SURVEY 

In recent years, the system design, deployment, and management of 

wireless radio frequency (RF) networks have become more tasking and 

complicated [1]. The intricacies and complications may be attributed 

to many dynamic factors. The advancement and constant evolution of 

different cellular network technologies, accompanied by different 

deployment procedures and management costs, can be a prominent 

factor [2]. In addition, frequent changes in localized environmental 

features such as houses, buildings, and trees, plus the varying weather 

condition around these networks, can be another significant factor [3]. 

Constant increasing traffic of mobile subscribers in the networks with 

different multimedia service quality demands could also be a key 

factor [4]. Remarkably, cell site acquisition is becoming more 

problematic due to the limited availability of suitable sites in a built- 

up area and neighbouring residents that generally work against such 

site installations, probably because of frequently rumoured 

electromagnetic radiations that emanate from them [5]. 

In order to cope with or overcome the aforementioned key challenges, 

the RF engineers must also be ready to explore techniques and efforts 

at the network design/deployment phase or optimization/management 

phase when in operation [6]. The propagation loss model is a key tool 

that the RF employs to estimate the cell radius and signal attenuation 

losses during and after cellular system network design/deployment [7]. 

These signal propagation models usually contain some unknown 

parameters that must be accurately determined in correspondence with 

experimental data from the terrain of interest. Inaccuracies in RF 

propagation modelling and their parameter estimation can compromise 

effective network planning, management, optimization, and 

operational activities [8]. The impact can be enormous regarding poor 

service quality, resource input wastage, and time costs. This key 

problem is often called the propagation model parameters 

identification problem in the telecommunication network engineering 

domain. 

Optimization algorithms play a crucial role in enhancing the accuracy 

and efficiency of predictive analytics by finding the optimal values of 

model parameters. Accurate modelling and estimating parametric 

values for cellular network-based propagation models is a dynamic 

optimization problem due to the different nonlinearities involved [9]. 

The interaction of the transmitted waves with different propagation 

mediums and terrain features around the receiver causes its strength to 

attenuate and degrade, thus resulting in what is known as signal 

propagation loss. During the cellular radio frequency (RF) network 

design or optimization phase of an existing one, the RF engineer uses 

signal propagation models to estimate the characteristics of signal 

attenuation losses that occur between the transmitting stations and the 

receiver stations [10]. These signal propagation models usually contain 

some unknown parameters that must be accurately determined in 

correspondence with experimental data from the terrain of interest. 

Different benchmarking and comparative works exist on numerical 

and global optimization performance impacts for real-time 

applications but not within the domain of intricate RF propagation 

modelling and parameter tuning problems. In [11], deterministic local 

and stochastic global optimization methods were investigated and 

compared to identify and estimate unknown kinetic model parameters 

systematically. 

This paper identifies and provides an overview of the common existing 

numerical and global optimization methods. The second focus is to 

benchmark the precision performance of the identified numerical and 

global optimization methods with practical case studies from different 

radio signal propagation terrains. In [12], both stochastic and 

deterministic global optimization algorithms were studied for 

nonlinear biological modelling and parameter estimation. The 

stochastic methods provided lower processing time from their results 

but with poor convergence to a global minimum under a limited 

iteration number. On the contrary, the deterministic methods yielded 

preferred solutions regarding convergence quality but huge 

computational weights. 

Several global optimization algorithms are benchmarked with standard 

functions for practical applications, presented in [13]. The authors 

discovered that the Hybrid Differential Evolution and Adaptation 

Evolution Strategy Algorithm was better for complex objective 

functions than the Hook–Jeeves and particle swam optimization, 

which attained better global minimum convergence for less complex 

objective functions. 

In [14], five different global optimization algorithms were investigated 

for benchmarking to reconstruct and optimize nano-optical shape 

parameters. From the investigation, the Bayesian optimization method 

was reported to outperform other algorithms, such as differential 

evolution and particle swam, in terms of run times. A similar approach 

involving different optimizers is presented in [15] for the panel data 

model. It found that the computational success rate of the optimizers 

varies proportionally with the nature of the problem being handled by 

them. In [16], the cumulative density function is explored as an 

indicator to benchmark the performance of stochastic global 

optimization algorithms on test data sets’ analysis. The result reveals 

that the algorithms with the pure random search performed preferably 

better. In [17], numerical-based optimization techniques focusing on 

Levenberg–Marguardt (LM) and Gauss–Newton (GN) algorithms 

were investigated to compare their performance on the propagation 

model parameter optimization and prediction analysis. With the 

application focus on loss data taken from built-up areas, the results 

showed that the LM outperformed the GN in terms of precision 

accuracies. In [18], Particle Swarm Optimization (PSO) and random 

forest (RF) were applied comparatively to tune and identify the 

parameters of the signals’ attenuation models. The authors found that 

the PS method attained the most preferred precision performance by 

22–25% across the study locations, using maximum absolute error as 

the indicator. 

In [19], neural networks, support vector machine, and random forest 

were benchmarked with traditional path loss models like the COST 

231-Walfisch Ikegami model and COST 231-Hata model. The authors 

disclosed that random forest yielded the best precision performance in 

path loss prediction. 

Through the propagation modelling and benchmarking process, it was 

found in [20] that the proposed Light GBM model, which is a machine 

learning-based developed modelling algorithm, outperforms the 

empirical models by 65% in terms of prediction accuracy and 

decreased by 13 x in prediction time when matched with ray-tracing. 

The notable performance was achieved even with thin training data 

sets. Also, via detailed benchmarking processes in [20], the authors 

developed hybrid particle swarm–random forest and vector statistics– 

neural network models for propagation loss modelling and observed 

that their proposed models attained preferred prediction accuracies 

compared to traditional approaches. 

In [21], the predictive modelling performance of four popular machine 

learning methods consisting of support vector regression, neural 

networks, gradient tree boosting, and random forest was compared 

with empirical path loss models after incorporating crossed walls’ 

number into them. From among the four learning-based methods 

engaged, the gradient tree boosting displayed the best generalization 

and prediction capacities. 

3. PROPOSED METHODOLOGY 

The project is focused on optimizing the prediction of Radio 

Frequency (RF) signal propagation models, specifically for 5G 

networks. The goal is to predict signal strength based on various 

environmental and technical features that influence the propagation of 

signals in a wireless network. The project utilizes machine learning 

and deep learning techniques to achieve this optimization, with an 

emphasis on applying regression models for more accurate predictions. 

Steps Involved: 

The primary objective of this project is to predict Signal Strength, 

which serves as the dependent (target) variable in the dataset. Accurate 
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signal strength prediction is crucial for 5G network planning, 

ensuring optimal coverage, efficient resource utilization, and 

minimal interference. To achieve this, the project focuses on 

optimizing existing signal propagation models using advanced 

machine learning and deep learning techniques. By carefully 

selecting relevant features and applying optimized regression 

techniques, the goal is to enhance prediction accuracy and minimize 

errors. 

A hybrid approach is employed, integrating both traditional 

machine learning models such as KNN and AdaBoost, alongside 

deep learning models like CNN. This approach allows for a 

comparative analysis of different techniques, facilitating the selection 

of the most effective method for signal strength prediction. By 

leveraging the strengths of both machine learning and deep learning, 

the project aims to develop a robust predictive model that enhances the 

efficiency of network planning and optimization in 5G environments. 
 

FIGURE 1. Proposed system Block Diagram 

The workflow begins with Data Collection and Preprocessing, where 

the dataset (logged_data.csv) is imported, missing values are handled, 

duplicate rows are removed, and categorical variables are encoded 

using Label Encoding. Additionally, numerical features are normalized 

using Standard Scaler to improve model performance. Next, in the 

Exploratory Data Analysis (EDA) phase, correlation analysis is 

performed using heatmaps to understand feature relationships with 

Signal Strength, followed by feature selection to retain only the most 

relevant features. The dataset is then split into training (80%) and 

testing (20%) sets using train_test_split from scikit-learn. 

For Model Building and Training, both traditional machine learning 

models (KNN Regressor, AdaBoost Regressor) and a deep learning 

model (CNN) are trained. The CNN model consists of convolution 

layers, max-pooling layers, dropout layers, and dense layers, and is 

trained using the prepared dataset. The trained models are evaluated 

using Mean Absolute Error (MAE), Mean Squared Error (MSE), Root 

Mean Squared Error (RMSE), and R² Score, and their predictions are 

visualized using scatter plots comparing actual vs predicted values. 

Once trained, the models are saved for deployment, with KNN and 

AdaBoost stored as .pkl files using joblib, and the CNN model saved 

as an .h5 file. If pre-trained models exist, they are loaded from disk to 

optimize computational resources. The trained models are then used 

for predictions on new data (testdata.csv), ensuring that the test data 

undergoes the same preprocessing steps. Predictions are stored 

alongside actual values for further analysis. Finally, Result Analysis 

and Reporting compares the performance of KNN, AdaBoost, and 

CNN, visualizes the results using scatter plots, and summarizes their 

performance using evaluation metrics, providing insights into the 

effectiveness of different modelling approaches for Signal Strength 

Prediction. 

The Improved CNN Model is an advanced version of a Convolutional 

Neural Network (CNN) designed specifically for predicting RF signal 

strength in 5G networks. Unlike traditional CNNs used for image 

classification, this model has been adapted for regression tasks, 

allowing it to predict continuous values such as signal strength based 

on various environmental and network factors. CNNs are well-suited 

for this task because they can automatically learn spatial hierarchies 

and patterns from raw input data, eliminating the need for extensive 

manual feature engineering. 

The architecture of the model includes multiple 1D convolutional 

layers, followed by max-pooling layers to reduce dimensionality, 

dropout layers to prevent overfitting, and fully connected (dense) 

layers for the final prediction. This structure enables the model to 

efficiently capture temporal and spatial dependencies in the RF signal 

data, making it more robust in generalizing across different network 

conditions. The model is trained on features such as geographical data, 

network topology, and environmental factors, making it a powerful 

tool for optimizing 5G network planning and improving coverage 

accuracy. 

 

 

4. EXPERIMENTAL ANALYSIS 

The implementation of the deep learning-based RF signal 

propagation modeling system for 5G networks follows a 

structured approach to achieve accurate signal strength 

predictions and optimize network planning. The process begins 

with setting up the necessary libraries and dependencies. 

Warnings are suppressed to avoid unnecessary logs, and 

essential data science and machine learning libraries such as 

pandas, numpy, scipy, seaborn, and matplotlib are imported for 

data manipulation, analysis, and visualization. The scikit-learn 

library is utilized for tasks like data splitting, scaling, and 

implementing regression models, while TensorFlow/Keras is 

used for building the deep learning-based Convolutional Neural 

Network (CNN) model. 

The next step involves data loading and preprocessing. The 

dataset (logged_data.csv) is loaded into a pandas DataFrame, 

and its structure is analyzed by checking for missing values, 

duplicated records, and overall data distribution. Categorical 

features are encoded into numerical values using LabelEncoder, 

ensuring the data is machine-learning compatible. A heatmap is 

generated to visualize correlations between features and the 

target variable (Signal Strength), providing insights into feature 

relationships. The dataset is then split into input features (X) 

and the target variable (y), followed by further splitting into 

training and test sets, with 80% allocated for training and 20% 

for testing. Standardization is applied using StandardScaler to 

normalize the feature values, improving the model’s efficiency. 

Additionally, synthetic data is generated using make_regression 

to augment the dataset and enhance model generalization. 

The model training and evaluation phase consists of 

implementing multiple predictive models. A K-Nearest 

Neighbors (KNN) regressor is trained on the scaled dataset, and 

if a pre-trained model (knn_regressor.pkl) is available, it is 

loaded instead of retraining. The performance of the KNN 

model is evaluated using regression metrics such as Mean 

Absolute Error (MAE), Mean Squared Error (MSE), Root 

Mean Squared Error (RMSE), and R² score. Similarly, an 

AdaBoost regressor is trained and evaluated using the same 

approach. The deep learning-based CNN model is then 

implemented using Keras, comprising multiple convolutional 

layers, max-pooling layers, dropout layers for regularization, 

and fully connected layers for regression output. The model is 

compiled with the Adam optimizer and Mean Squared Error 

loss function. If a pre-trained CNN model 

(improved_cnn_model.h5) exists, it is loaded for predictions; 

otherwise, it is trained, saved, and evaluated. 
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Evaluation metrics and visualization play a crucial role in 

assessing model performance. A custom function 

(calculateRegressionMetrics) calculates key regression metrics, 

including MAE, MSE, RMSE, and R² score. A scatter plot is 

generated to compare actual vs. predicted values, providing a 

visual representation of the model’s accuracy. For the CNN 

model, another function (calculate_metrics) evaluates 

performance using the same metrics and visualizations. After 

evaluation, the model is applied to test data (testdata.csv). The 

test dataset is reshaped for CNN compatibility, and predictions 

are generated, with results stored in a DataFrame for further 

analysis. The trained KNN and AdaBoost models are saved 

using joblib, while the CNN model is stored using Keras' .save() 

function, allowing future reuse without retraining. 

The dataset used in this project is crucial for modeling RF signal 

propagation in 5G networks. It includes real-world logged RF 

signal data, along with synthetic data for additional robustness. 

The dataset, stored in CSV format, consists of thousands of 

rows with various features categorized into network 

parameters, environmental parameters, user equipment data, 

and weather data. Key network parameters include frequency 

(Hz), transmission power (dBm), and bandwidth (MHz), which 

directly influence signal strength. Environmental parameters 

such as building density, vegetation index, and terrain type 

affect signal propagation, while user equipment data (latitude, 

longitude, and device specifications) provide additional 

context. Weather conditions, including temperature, humidity, 

and rainfall, contribute to signal attenuation. The target 

variable, signal strength (RSS), ranges between -120 dBm 

(weak) to -30 dBm (strong), serving as the primary prediction 

objective. 

Data preprocessing is essential to prepare the dataset for 

machine learning models. This includes handling missing 

values, encoding categorical data like terrain type into 

numerical values, and scaling continuous variables for 

consistency. Synthetic data is generated using make_regression 

from Scikit-Learn to create additional samples, ensuring the 

model encounters diverse scenarios for improved robustness. 

By following this systematic approach, the project successfully 

implements a deep learning-based RF signal propagation 

modeling system, capable of making accurate signal strength 

predictions to optimize 5G network planning. 

 

FIGURE 2. Sample Dataset to check the Signal Strength. 

 

 

FIGURE 3. Heat map for column importance 
 

FIGURE 4. Illustration of confusion matrix obtained using KNN 

model. 
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FIGURE 5. Illustration of confusion matrix obtained using 

AdaBoost model. 
 

 

FIGURE 6. Illustration of confusion matrix obtained using CNN 

model. 
 

TABLE 1. Comparison of all models. 

5. CONCLUSION 

The integration of deep learning techniques, particularly the improved 

Convolutional Neural Network (CNN) model, into RF signal 

propagation modelling for 5G networks presents a significant 

advancement over traditional methods. While traditional RF signal 

models such as path loss, ray tracing, and empirical measurements 

have been integral to network planning and optimization, they often 

face limitations in accuracy, computational efficiency, and adaptability 

to complex, dynamic environments. These traditional models also 

struggle to handle the intricacies of modern 5G networks, which 

involve highly dense deployments, high-frequency signals, and rapidly 

changing environmental factors. 

The proposed deep learning-based approach leverages CNNs to 

analyse large datasets and learn complex patterns in RF signal 

propagation, improving the accuracy and efficiency of signal strength 

predictions. By training the model on diverse data, the improved CNN 

model can adapt to different environments, making it a promising tool 

for real-time network optimization and planning. In addition, the 

model's ability to continuously improve with more data and its 

potential for real-time predictions make it suitable for dynamic 5G 

environments. 

 

REFERENCES 

[1] Tataria, H.; Haneda, K.; Molisch, A.F.; Shafi, M.; Tufvesson, F. 

Standardization of Propagation Models: 800 MHz to 100 GHz— 

A   Historical Perspective. 2020. Available 

online: http://arxiv.org/abs/2006.08491. 

[2] Viswanathan, H.; Mogensen, P.E. Communications in the 6G 

Era. IEEE Access 2020, 8, 57063–57074. 

[3] Shen, S.; Zhang, W.; Zhang, H.; Ren, Q.; Zhang, X.; Li, Y. An 

Accurate Maritime Radio Propagation Loss Prediction Approach 

Employing Neural Networks. Remote Sens. 2022, 14, 4753. 

[4] Oueis, J.; Strinati, E.C. Uplink traffic in future mobile networks: 

Pulling the alarm. In Cognitive Radio Oriented Wireless 

Networks, Proceedings of the 11th International Conference, 

CROWNCOM 2016, Grenoble, France, 30 May–1 June, 2016; 

Springer: Berlin/Heidelberg, Germany, 2016; pp. 583–593. 

[5] Fehske, A.; Fettweis, G.; Malmodin, J.; Biczok, G. The global 

footprint of mobile communications: The ecological and 

economic perspective. IEEE Commun. Mag. 2011, 49, 55–62. 

[6] Imoize, A.L.; Udeji, F.; Isabona, J.; Lee, C.-C. Optimizing the 

Quality of Service of Mobile Broadband Networks for a Dense 

Urban Environment. Future Internet 2023, 15, 181. 

[7] Mohammadjafari, S.; Roginsky, S.; Kavurmacioglu, E.; Cevik, 

M.; Ethier, J.; Bener, A.B. Machine learning-based radio coverage 

prediction in urban environments. IEEE Trans. Netw. Serv. 

Manag. 2020, 17, 2117–2130. 

[8] Lim, S.Y.; Yun, Z.; Iskander, M.F. Propagation measurement and 

modeling for indoor stairwells at 2.4 and 5.8 GHz. IEEE Trans. 

Antennas Propag. 2014, 62, 4754–4761. 

[9] Morita, Y.; Rezaeiravesh, S.; Tabatabaei, N.; Vinuesa, R.; 

Fukagata, K.; Schlatter, P. Applying Bayesian optimization with 

Gaussian process regression to computational fluid dynamics 

problems. J. Comput. Phys. 2022, 449, 110788. 

[10] Zakaria, Y.A.; Hamad, E.K.I.; Elhamid, A.S.A.; El-Khatib, K.M. 

Developed channel propagation models and path loss 

measurements for wireless communication systems using 

regression analysis techniques. Bull. Natl. Res. Cent. 2021, 45, 

54. 

http://arxiv.org/abs/2006.08491

